Biology concepts – motility, microbiology, bacteria, evolution, gliding, twitching, flagella, pilus
Balish MF (2014). Giant steps toward understanding a mycoplasma gliding motor. Trends in microbiology, 22 (8), 429-31 PMID: 24986074
Kinosita Y, Nakane D, Sugawa M, Masaike T, Mizutani K, Miyata M, & Nishizaka T (2014). Unitary step of gliding machinery in Mycoplasma mobile. Proceedings of the National Academy of Sciences of the United States of America, 111 (23), 8601-6 PMID: 24912194
Jin F, Conrad JC, Gibiansky ML, & Wong GC (2011). Bacteria use type-IV pili to slingshot on surfaces. Proceedings of the National Academy of Sciences of the United States of America, 108 (31), 12617-22 PMID: 21768344
Stocker R (2011). Reverse and flick: Hybrid locomotion in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 108 (7), 2635-6 PMID: 21289282
The most common type of movement for bacteria is called run and tumble. Sounds a little like a toddler learning to walk; however, the bacteria aren’t falling down, it’s more like run and wander for them. The run is easy enough to explain; the flagella we talked about last week spin and the bacteria swims forward in its fluid environment like a little torpedo.
It’s not quitethat simple, but close. We explained last time that a flagellum is made of subunits of the flagellin protein and that these are joined together into a hollow helix. The helix is most often left-handed (as you rise, the curve moves to the left). So when these bacteria spin their flagella counterclockwise (looking from behind the flagellum), the helix is pressed tight together and spins efficiently – lots of forward movement. For those bacteria with right-handed helices in their flagella, a clockwise spin is for forward movement, but this is less common.
When the flagellum/flagella rotate the opposite direction, you might think they would go backwards, but not so much. Many bacteria have more than one flagellum and they work together when all spinning one for forward motion (more next week). They bundle together like the trailing hair of a girl who is swimming forward in a pool. But what happens when she stops or turns around quickly? Her hair ends up in a tangled mess and she has to brush it out of her eyes – that is unless she starts swimming again, then it trails behind in a bundle again.
For a bacterium with a single flagellum, the reversal of spin pushes the bacterium backwards, but then it runs into the flagellum and all efficiency is gone. In a motor boat, the propeller is fixed a certain distance from the back of the hull, so when it reverses direction, the movement may be less efficient, but the boat doesn’t run into its own propeller. But with a flagellum, the bacterium gets pulled right into the flagellum and movement is hampered severely. The tumble begins.
Tumbling is just a random turning based on the various places the flagella are inserted into the bacterial cell, the nature of the flow of the fluid the bacterium is in, and the efficiency of the movement. However, after a small tumble time, they will spin forward direction and the bacterium will take off running forward again, probably in a new direction. The purpose the run and tumble is to move toward something good (source of food) or away from something bad (predator or chemical). More on this in a couple of weeks.
Of course, there are exceptions. Some marine bacteria (those that swim in salt water) have one flagellum and can reverse direction by rotating their flagellum the opposite direction. This works for a while and actually works better for reversing motion than having several flagella would. However, a new study shows that they don’t reverse for long, they quickly execute a trick called a flick. Their flagellum flicks in one direction, turning them so that when they run again, it will be in a new direction.
The researcher’s paper shows that this "reverse and flick" is a very efficient way of turning. Some of these bacteria can move up gradients toward food faster than bacteria that use the run and tumble method. "Reverse and flick" is a good strategy, just like the “bend and snap maneuver from the movie Legally Blonde.
a bit last week. Spirochetes have internal flagella (called endoflagella) that run the length of their corkscrew shape in their periplasm (between inner and outer membranes).
According to a 2005 paper, these 7-11 flagella lie in a ribbon that wraps around the cell body. By rotating counterclockwise, the flagella put a torque into the cell body that makes it spin the opposite direction, this drives the spirochete forward. See the image to the right and this movie to get a better picture.
If most bacteria use flagella to move, you just know that some have to be finding a different way. Twitchingis a kind of bacterial motility that doesn’t need flagella at all. Even though I could probably come up with several movie references for twitching, I will refrain. Twitching makes use of small appendages that project from bacteria cells called pili (pilus is the singular, it comes from Latin for hair). We have talked about them before in terms of trading DNA back and forth in lateral gene transfer, but here that are used to move the bacteria along.
Pseudomonas aerguinosa bacteria are famous for twitching, but a surface has to be involved, it isn’t possible in a liquid medium only. The proteins in type IV pili are coiled like a slinky. They stretch out, attach to a surface, and then retract forcefully. This jerks the bacterium forward. This was discovered in the very late 1990’s, but they didn’t know how they turned until 2011.
A 2011 PNAS paper showed that they slingshot themselves. Some pili stretch out and attach. Others stretch out in another direction and then instead of retracting to pull the bacterium in that direction, they release at the tip. This shoots the organism in the other direction. It’s the moral equivalent of a tumble, just not using flagella.
Another kind of surface motility is called gliding. This type of motion is more of a mystery than twitching ever was. There’s more than one way to glide. The first example of gliding can really be considered elegant twitching. It uses type IV pili that stretch out and then retract, but it is much smoother than the jerky movement created when twitching.
Another type of gliding is used by some cytophagia (cell-eating) and flavobacterial organisms. This movement might work a little like a conveyor belt, where proteins attach to the surface and then move along the cell’s surface from front to back. As the proteins are moved backwards, the cell moves forward. Many show a helical track along the surface of the bacterium, so that as the proteins dislocate toward the back, the cell goes both forward and rotates around its long axis – efficient, but they may get dizzy. A 2014 minireview paper shows that very different bacteria use the same mechanism, but the proteins and force for motility are different.
Finally, one of the fastest bacteria on surfaces is called Mycoplasma mobile. It may use a mechanism of motility previously unseen and evolutionarily stunning. A 2005 paper showed that if you lyse the M. mobile with a detergent, but provide the resulting fragments with the proper ions, they will still move along a surface. This suggested that the mechanism was ion gradient driven and confined to the membrane.
More recent studies (here and here) suggest that the protein mechanism in the membrane might look very similar to the cytoskeleton of a eukaryotic cell. This would be either an evidence of an endosymbiotic origin of the cytoskeleton or that very different organisms had the same great idea, called convergent evolution. Either way, it’s cool.
Several strains of bacteria together known as Myxococcus use different types of gliding at different times. When M. xanthus is with other bacteria of his kind, they move using something called social gliding, which is of the conveyor belt type OR the elegant twitching type. But when he’s alone, he performs adventurous gliding, which uses slime extrusion. Humans call this social climbing, but sliminess is certainly involved in both.
Speaking of social motility - bacteria working with other bacteria; this just happens to be our topic for next week.
For more information or classroom activities, see:
A great site from Harvard University with movies of many types of bacterial motility:
http://www.rowland.harvard.edu/labs/bacteria/movies/
A great site from Harvard University with movies of many types of bacterial motility:
http://www.rowland.harvard.edu/labs/bacteria/movies/
Bacterial motility -
Run and tumble –
Pili –
Gliding –
http://www.molecularmovies.com/showcase/